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I. INTRODUCTION 

The problem of synthesis of a resistive n-port network from its 

port-admittance matrix, Y, is certainly not a new one. Much investiga­

tion has been carried on as cited in the Literature Search section; but, 

the general problem seems far from being solved. Even though many of 

the known resistive synthesis procedures and their implications can be 

applied to networks with R, L, and C elements the author restricts the 

developments to resistive elements. Since the derivations are carried 

out utilizing nodal analysis terminology the element values of the 

realized network are referred to as conductances. 

Linear graph theory plays an important role in analysis and 

synthesis of networks. After defining many of the basic terms involved 

with linear graph theory and its applications much of the investigation 

relies upon the augmentation of the original port-admittance matrix with 

reference to linear transformations and cut-set notation. 

Throughout the development and discussion of the realization 

techniques the n ports of interest corresponding to the (nxn) port-

admittance matrix are arranged in a basic Lagrangian tree or in 

k (2^k^n) Lagrangian subtree structures. This form of port structure 

lends itself nicely to nodal methods. Two forms of (n+2)-node synthesis 

methods are developed. One form relies entirely upon the element values 

of the given port-admittance matrix and requires no solving for unknown 

quantities. The second method depends upon the solving of a set of 

independent equalities and inequalities. Compared to the first method 

this method is a much more flexible; but, involved technique. 
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A third synthesis procedure, which concerns itself with the general 

case, is developed. Like the second method it requires satisfying a set 

of independent inequalities. This independent set of inequalities is 

derived from the augmented port-admittance matrix. The network synthe­

sized by this procedure or by the second procedure is certainly not 

unique since the solution for the unknown quantities in general will be 

in the form of a bounded solution. Also, the initial step of each 

method restricts the topology of the network to basic Lagrangian tree 

s tructures. 
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II. TERMS AND DEFINITIONS 

The language associated with linear graph theory and its applica­

tions does not always follow a precise standard. Thus, many of the 

terms possess various meanings depending upon the presentation or publica­

tion where they are found. In this section the author wishes to clarify 

the meaning of the terms or operations that are pertinent for the under­

standing of the material found in the following sections. The definitions 

that the author gives are those of the references cited and of personal 

preference according to the context of the following sections. They are 

thought to be the most standard representations. 

1. (14) A matrix is a rectangular array containing m rows and 

n columns of elements of a scalar field F. It is called an (mxn) 

matrix over F. 

2. (14) The transpose of matrix, A = [a_j], denoted by A % is 

defined as A' = [b. .] where b.. = a... 

3. (14) An (nxn) matrix A is non-singular if and only if a 

matrix B, its inverse. exists such that AB = I. Otherwise, 

- 1  
A is said to be singular. We denote the inverse as B = A 

4. (14) A linear transformation. T, from a vector space, V, 

to a vector space, W, both over the scalar field, F, is a 

mapping of V into W such that for all 0!,PeV and for all 

a,beF, 

(aa + bp)T = a(aT) + b(pT). (1) 

The linear transformation that is used in Section IVF is 

described as Yg = SY^S' where S' is the non-singular matrix 
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that gives the set of voltages, V^, associated with the 

admittance matrix, Y^, in terms of the set of voltages, V2, 

associated with the admittance matrix, Yg. 

5. A dominant (nxn) matrix, D, satisfies the condition that 

n 
d.. ̂  2 |d I, i = 1, . . n. 

i^j 
j=l 

6. (26) Further restricting the matrix D, a hyperdominant 

matrix also must satisfy the condition, 

• •, n; j = 1, • • •, n. 

(2)  

d 3 0; i ̂  j; i = 1, " 

7. (25) A real matrix is defined as a paramount matrix if each 

principal minor of the matrix is not less than the absolute 

value of any minor built from the same rows. 

8. (24) The short-circuit admittance matrix, Y, is defined as 

the coefficient matrix of the system of equations. 

(3) 

11 In 

''nl 'nn 

V, 
1 

V 
_ n 

(4) 

where upon setting the appropriate voltages equal to zero the 

y^^j functions are equated to the current-voltage ratio. The 

author will sometimes refer to this matrix as the port-

admittance matrix. 

9. (24) A cut-set is a set of edges of a connected graph G such 

that the removal of these edges from G reduces the rank of G 
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by one, provided that no proper subset of this set reduces 

the rank of G by one when it is removed from G. Here the 

rank of a graph is defined as (v-p) where there are v vertices 

and p maximal connected subgraphs. 

10. (24) The cut-set matrix of a graph with v vertices and e edges 

is given by = [q^j] which has one row for each cut-set of 

the graph and e columns, such that 

= 1 if edge j is in cut-set i and the orientations agree, 

q.. = -1 if edge j is in cut-set i and the orientations are, 
-

opposite, and 

q^j = 0 if the edge j is not in cut-set i. 

Also, a matrix formed from (v-1) independent rows of will 

be labeled the cut-set matrix, Q. 

11. (7) A port is an accessible terminal pair regarded as a 

single entity. 

12. (24) A node is an endpoint of an edge. An edge is defined 

as a line segment together with its distinct endpoints. In a 

graph an edge may represent a circuit element such as a 

resistor, capacitor, inductor, etc. Since the author deals 

only with resistive networks and the derivations and synthesis 

procedures deal with nodal methods, in many instances an edge 

will be considered a conductance. 

13. (13) An oriented edge is an edge wiuh orientation shown by an 

arrowhead on the edge pointing away from the first node and 

toward the second node. 
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14. (13) With each network element (edge) there are two real 

valued functions of bounded variation of the real variable, t. 

These are termed element (edge) voltage and element (edge) 

current. The orientation that will be used for the network 

element and edge is shown in Figure 1. 

15. (24) A linear graph is a collection of edges, no two of which 

have a point in common that is not a node. 

16. (24) A subgraph is a subset of the edges of the graph; 

therefore, it is a graph itself. 

(6) If a graph g' = (V',E',r') is so related to a graph 

G = (V,E,r) that vtv, E^E, and r'(e) = r(e) for every edge 

eeE' then the first graph is said to be a subgraph of the 

second. 

17. (6) A directed graph is a mathematical system consisting of 

two sets V and E, together with a mapping. A, of E into VXV. 

V refers to vertices and E to edges. 

18. (6) A total graph is a directed graph such that, for every two 

distinct vertices v and w, there is a path from v to w or one 

from w to V (or both). Here a path is defined as an open 

curve composed of consistently directed edges. 

19- (6) A connected graph is such that every pair of distinct 

vertices are joined by at least one chain. Here a chain 

is defined as a set of edges which form an open curve. In 

considering only the designated set of edges, the degree of each 

end vertex is 1 with all other vertices in the chain each 

having degree 2. 
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4- ik(t) 

a 
o 

4. y V k 

0-

b 
6 

b 
(a) Circuit element representation (b) Graph edge representation 

Figure 1. Voltage and current orientation for circuit 
representation and graph representation 
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20. (6) A circuit is a set of edges which form a closed curve. 

In considering only these edges the degree of each vertex in 

the circuit is 2. 

21. (13) A graph G with v vertices is a complete graph if each 

pair of vertices is connected by an edge (a series or parallel 

connection of edges is not allowed). The degree of each vertex 

of a complete graph is (v-1). A complete graph has 

edges. 

22. (6) A tree is a connected graph which has no circuits (closed 

paths). The author will use the terms subgraph and subtree 

which will refer to a connected set of nodes which are a subset 

of the total set of nodes. 

23. A port tree is a connected set of edges each of which connects 

a terminal pair from which voltages and currents of interest 

may be measured. 

24. A Lagrangian tree is a connected set of L edges corresponding 

to L ports of interest, all of which have a common node. Thus, 

a Lagrangian tree containing L ports has (L+1) nodes. The 

orientation of the edges, as considered by the author, will be 

from the + node to the - node with the common node being the 

negative node. An example of a Lagrangian tree is given in 

Figure 2. A Lagrangian subtree as used by the author is simply 

a subset of the n ports of interest given by the port-admittance 

matrix which can be grouped into a tree structure such as 

illustrated in Figure 2. The convention of circling the port 
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representations will be carried throughout the text. 

25. A linear tree is a connected set of S edges corresponding 

to S ports of interest with (S+1) nodes. (S-1) of these nodes 

have degree two while two nodes have degree one (end nodes). 

An example of a linear tree is given in Figure 3. 
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Figure 2. Basic form for the Lagrangian tree (or subtree) with 
L ports of interest 

0 (b) (0) 0 
Figure 3. Basic form for the linear tree (or subtree) with S 

ports of interest all oriented in the same direction 



www.manaraa.com

11 

III. LITERATURE SEARCH 

A. Concentration on (nfl)-Node Resistive Networks 

Even though much effort has been spent concerning the synthesis of 

n-port resistive networks the general problem seems far from being 

solved. The results of previous investigations concerning (n+1)-, 

(nf2)-, and on up to 2n-node (2n nodes are sufficient if the network is 

at all realizable) synthesis of resistive networks will be presented with 

the deserving references cited. 

The (n+l)-node network is the simplest network (with reference to 

the minimum number of nodes) that can be realized from an (nxn) port-

admittance matrix. At a first glance it seems that it would only be 

necessary to find a tree of the voltage variables used for defining the 

matrix. Indeed, this is an important step in most of the synthesis 

procedures. When restricting an (n^l)-node network to a Lagrangian 

tree structure containing the ports of interest an inspection of the 

matrix provides the simple necessary and sufficient conditions for 

realization (26). These conditions restrict the matrix to one having 

a hyperdomlnant or potentially hyperdominant form. 

If the port-admittance matrix is based upon a linear tree of 

voltage variables then the matrix must possess the property of being a 

uniformly tapered matrix (or capable of being arranged in this form). 

This result was derived independently by Guillemin (17) and slightly 

later by Biorci and Civalleri (1) in their use of the sign matrix. If 

represents the t^rpical element of an n— order matrix, G, then the 

uniformly tapered condition is defined by 
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Gik a ° <5) 

=ij + =1-1,3+1 ̂  J + i = j-

where by definition 

^i,nH-l = S,j = 0-

The preceding results concerning linear and Lagrangian trees were 

also justified by Brown and Tokad (5) with a slightly different form of 

derivation. The necessary and sufficient conditions for the realization 

of a given (nxn) real symmetric matrix, A = [a_j]^, as the short-circuit 

conductance matrix of a linear tree terminal graph using a complete graph 

of R elements with (nfl) nodes appear in the following form as found in 

the cited reference. 

1. The sign pattern of A must be such that after a finite number 

of cross-sign changes, all the entries are non-negative. 

2. It must be possible to find a rearrangement of rows and 

corresponding columns such that when = |a^^| - |a^_^ , 

i^j; aP- I^iqI = 0; then 

A* > 0 

A^'^ - A^ ̂  0 

aJ"^ - A^"^ ̂  0 

A^ - A^^ ̂ 0 (i = 1, ' ' n). (8) 

Also, the corresponding requirements for the realization with a 

Lagrangian tree are given (5). 
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1. The sign pattern of A = [a^j]^, a^^ > 0 must be such that after 

a finite number of cross-sign changes all the off-diagonal 

entries of A are non-positive. 

n 
2. 2a.. ̂  2 I a..I with i = 1, ' ' n. (9) 

j=l ^ 

Many of the basic features of (nfl)-node synthesis were formulated 

by Guillemin (17). Much of the initial .work was concerned with the sign 

matrix. Except for row and column interchanges each sign matrix uniquely 

specifies a geometrical tree pattern and vice versa. It is interesting to 

note that the linear tree is the only one for which all signs in the port-

admittance matrix are positive. Thus, if the signs of the element values 

of a matrix (port-admittance,matrix) are all positive the matrix must be 

a uniformly tapered matrix or else it has no realization in an (rrf-1)-

node nettfork. 

Guillemin's "tree-growing method" (16) recognizes that construction 

of a tree from a given matrix can be done by inspection once the pattern 

of growth is established. Therefore, a sorting method is used on a cut­

set matrix that weeds out the outermost tips and twigs of the tree. 

Once these are removed the remainder of the matrix then possesses 

additional tips. The process is continued until the growth pattern is 

established. The method is actually regarded as a test for necessary and 

sufficient conditions for realization since the procedure cannot fail to 

yield a graph if one does indeed exist for the matrix. A detailed 

discussion of the tree growing method is given in the reference (16). 

Once the tree structure is established then a linear transformation 

which carries the given matrix over to one corresponding to a linear tree 
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or Lagrangian tree is used. The new matrix must satisfy previously 

mentioned conditions based upon the linear or Lagrangian tree. Thus, 

the existence of a tree does not assure a realization. The topological 

method concerning the tree growing process is certainly not fool-proof 

and it is possible for a matrix to be realizable even though the (nfl)-

node realization fails. 

Biorci and Civalleri (2) formulated several definitions and basic 

properties which are applicable to (n+-l)-node synthesis. They proposed 

a topological solution for finding the tree of the graph. In their 

work they used the following ideas. 

1. The complete tree is the set of n ports. 

2. A tree-path is a path of the complete tree. 

3. The mutual conductance, G^j, between ports i and j is positive 

(negative) if the orientation of port j is the same as 

(opposite to) that of the tree-path [i,j]. 

4. If Gj^j is positive (negative) and G^j^ and G^^ have the 

same (opposite) sign the tree-path [i,j,k] exists. 

5. Likewise, if G^^ is positive (negative) and G^^^ and G^^^ 

have the opposite (same) sign the tree-path [i,j,k] does 

not exist. 

6. The theorem stating that of the two mutual conductances, 

G and G, , the larger in absolute value is that between 
ac be 

port c and that of the two ports a and b which is closer to c 

in the tree path (c,a,b) proves to be a very useful theorem 

in their work. This theorem is used to determine the order of 
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ports which appear in a "series" portion of the tree. All of 

the other ports are uniquely determined by the sign of the off-

diagonal elements of the given matrix if a tree does exist. 

A necessary condition that the conductance matrix, G, be realizable 

with (n+-l) nodes is that G be expressible as 

G = ADA' (10) 

where D is a diagonal matrix with non-negative elements, A is an E 

matrix (that is, a matrix whose elements and subdeterminants take on 

only the values + 1 of 0), and A' is the transpose of A (8). In other 

words, each element of G can be expressed as a sum of some conductances 

of the branches of the network (if it exists), which are non-negative. 

These sums must be consistent with a possible connection of the branches 

themselves. This method requires many computations — examining third-

order determinants of G, computing subdeterminants of A, and finally 

determining the structure of the network from A. 

The condition of paramountcy as a necessary condition for a matrix, 

Y or Z, to be the admittance or impedance matrix of a resistive n-port 

was established by Cederbaum (10). This same property is sufficient for 

synthesis of a resistive 3-port from its admittance or impedance matrix. 

A method for reducing the main-diagonal elements of a paramount matrix, 

leading to its irreducible form is presented by Cederbaum (10). 

Topological implications of irreducibility of the admittance or 

impedance matrix of an n-port network are investigated further by 

Cederbaum in another reference (11). In special cases where (n-1) rows 

of an n— order matrix contain a diagonal element which is equal to the 

absolute value of an off-diagonal element in that particular row, 
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Cederbaum (11) proves that the conditions for realizability indicate a 

network which is realizable by (nf1) nodes or exactly n independent 

circuits. Also, paramountcy is proved not to a sufficient condition 

for realizability. 

Essentially, the problem of synthesis of a resistive n-port with 

exactly (nfl) nodes or n independent circuits may now be viewed as 

solved (9). However, the class of matrices whose realization in the Y 

or Z form may be accomplished by a straight-forward procedure is small. 

This group consists only of matrices decomposable in the unimodular 

congruence transformation with the corresponding E matrix yielding 

nicely to topological methods, dominant Y matrices, and their realiza­

tion in the Z form if they can be considered planar networks. All 

paramount matrices of order 3 fall into this class. 

The idea of equivalent networks presents another problem in n-port 

synthesis. As stated by Cederbaum (9), if an n-port realization exists 

there exist an infinite number of equivalent realizations. At the time 

of the published reference (9) (and the author knows of no recent 

contributions on the subject) there was no general theory of equivalence 

nor a known method of getting from an algebraically feasible solution 

containing negative conductances to a solution represented by non-

negative conductances. 

At first, work with (nH-l)-node synthesis was concerned only with 

matrices having all non-zero off-diagonal elements. When a zero off-

diagonal element appears it presents a question as to what sign should 

be associated with the element. Cederbaum, Halkias, and Kim (12) found 
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that k zero elements above the main diagonal presented 2^ different sign 

patterns thus establishing a much more complicated, but more flexible 

type problem. The authors of the above cited reference proposed a 

systematic procedure for obtaining the n-port structure of (nfl)-nodes 

associated with a Y matrix. Enumerating the particular features of this 

method the following list is given. 

1. A set of necessary conditions which eliminates a large class 

of matrices is presented. 

2. A procedure is derived for the determination of a port structure 

when a few or no zero elements are present in the matrix. 

3. A procedure which may also be applied to a Z matrix when the 

matrix contains a large number of zero elements is given. 

4. A procedure illustrates that more than one network each with 

(nH-1) nodes and containing different port structures may exist 

for a given Y matrix. 

Most of the work of Cederbaum (8, 9, 10, 11), Guillemin (15, 17), 

and Biorci and Civalleri (2) lead to procedures one would call realiza­

tion rather than realizability criteria. In a later reference (1) 

Biorci and Civalleri presented a realizability criterion which is 

applicable to a matrix without going through the actual realization of 

the tree. Basic forms (which the author will not repeat here) for the 

sign matrix are given. If a proper arrangement of the given sign matrix 

can be achieved to agree with one of the basic forms then this constitutes 

sufficient proof of realizability. 

Olivares (23) gives an algebraic approach for topological analysis 
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and synthesis of the star-tree equilibrium immittances — node 

conductance matrix or loop resistance matrix. This method utilizes a 

complete graph on (nf1) nodes. The ideas of tie-sets, cut-sets, and 

incidence matrices are combined to determine directly the diagonal 

branch immittance submatrices from the node conductance matrix or the 

loop resistance matrix. Since, at the time of Olivares's investigations, 

the necessary and sufficient conditions for realizing the star-tree 

(Lagrangian tree) and linear tree node conductance matrices were known 

he stressed the unknown, but seemingly similar conditions for the loop 

resistance matrix. 

One of the more recent contributions to the area of resistive 

(nfl)-node synthesis problems is presented by Boesch and Youla (4). 

This new technique for determining the realizability of an n-port on 

(nfl)-nodes eliminates Cederbaum's method (10, 11), and avoids the "tree-

growing" process of Guillemin (15, 17), and Biorci and Civalleri (2). 

It is algebraic in nature and has only one restriction — the matrix 

must have no zero elements. Some of the salient features of this 

method are listed here. 

1. It uses a new equation to relate the short-circuit admittance 

matrix to the inverse of the connection matrix of port voltages. 

2. A unique solution of the equation for the connection matrix 

is obtained by using a standard form for the short-circuit 

admittance matrix. 

3. A congruence transformation for hyperdominance is checked, 

completing the realizability of the matrix. 
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4. Tip ports are recognized by a new method. 

5. This latter statement is applied to the realization of a 

linear tree and eliminates the permutation process of getting 

a linearly tapered form. 

Although the method was confined originally to networks with complete 

graphs, a later correspondence (26) from Boesch indicated that the 

case of the incomplete graph was solved. 

In the following comments the author will try to condense the 

basic ideas of Boesch's method (4, 26). Noting that 

I = YV (11) 

where Y is given, then V may be represented by 

V = A0 (12) 

where 0 is a column vector representing a set of node-to-datum voltages. 

A is the transpose of a non-singular incidence matrix. The node-to-

datum conductance matrix, Y^, is then given by the congruence transfor­

mation. 

Also, 

Y. = A'YA. (13) 

0 = A'^V (14) 

or 0 = BV. (15) 

By defining the orientations of the tree branches, matrix B is found as 

a lower triangular matrix by use of the matrix equation 

B + B' = (Y) + U + 1 (16) 
z n 

where U is an n— order matrix, each of whose elements is +1, 1^ is the 

unit matrix of order n, sgn (Y) = [s^^] is the sign matrix of 
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Y (s.. = +1 if Y.,>0, s.. = -1 if Y..<0). 
ij 1] ij ij 

The elements of the lower triangular matrix, B, can be found from 

B + B' by taking one-half of the diagonal terms and reducing all the 

elements above the diagonal to zero. From the topological interpreta­

tion of B, the tree of port voltages can be drawn if it exists. From 

this, A is obtained by inspection. Then from Equation 13, Y^ will b* 

hyperdominant if and only if Y is realizable. For a more complete 

explanation and an example the reader is referred to the cited reference 

(3). 

B. Considerations on Augmented Admittance Matrices 

Later work by Guillemin (18) involved expansion of the short-

circuit admittance matrix with up to (n-1) additional rows and columns 

of zero elements yielding a matrix, Then the augmented matrix, 

G , which was to be realized, was defined as 
aug' 

G = G + B. (17) 
aug exp 

Matrix B possessed the following characteristics. 

1. B was a matrix having the same order as G^^^. 

2. The rank of B was directly dependent upon the number of rows 

(columns) of zero elements in G^^^, being exactly equal to this 

number. 

The method gave much freedom in the construction of matrix B, but 

necessitated a trial and error procedure. 

A geometrical consideration in conjunction with a paramount 

admittance matrix, Y, has been presented by Cederbaum (9). In this 

cited reference augmentation of the set of n ports to a linear (2n-l) port 
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tree on a complete graph of 2n nodes leads to a system of %n(nH-l) 

equations in q = n(2n-l) unknowns. All of the real solutions of this 

system of equations lead to equivalent n-ports. They are considered 

points of a manifold L in q-space, In this cited paper (9) the 

theory of equivalence is studied and properties of L are presented. 

The (n+2)-node realization of an (nxn) port-admittance matrix 

necessitates the construction of a port connecting two sub-trees which 

in some arrangement contain the n ports of interest. Halkias and Lupo 

(19) have presented a realization procedure on an (itf2)-node network 

where (n-1) ports constitute a linear sub-tree and the remaining port 

forms the other sub-tree. Their method involves the, realization of the 

n— row and column with the n~ port removed from the other (n-1) 

ports. The necessary and sufficient conditions are presented jEor this 

realization. In Section IVA the author further investigates this 

realization technique based upon the Lagrangian tree formulation. 

The nonlinear nature of the problem involved with (nf2)-node 

synthesis prompted the investigation by Jambotkar and Tokad (21). An 

arrangement of (nfl) resistors connected to a particular node in the 

network represented the unknown parameters. The conclusions from this 

reference are based on linear subtrees with the above mentioned connecting 

resistors providing a means to control the number of resistors in the 

network. 

Frisch and Swaminathan (15) have formulated a new set of necessary 

conditions for the (nxn) port-admittance matrix to be realized on (n+2) 

nodes. All of the procedures are based upon the fact that the two trees 

possess linear structures. The derived "supremacy" conditions represent 
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a set of inequalities involving products of pairs of elements in a matrix, 

S, which is obtained from a linear combination of entries from Y. The 

matrix Y is augmented by the addition of one port to form a connected 

port structure (one linear tree consisting of the connecting port and the 

two linear trees). The uniformly tapered conditions are then applied. 

A statement concerning the extension of the method to the case of (nfp) 

nodes (2<p^n) is also given. 

A new and enlightening approach to resistive (n4-2)-node synthesis 

is presented by Halkias and Lupo (20). The method relies heavily upon 

the principles of (nfl)-node synthesis and is based upon the concept of 

paralleling three networks. One network containing both positive and 

negative conductances establishes the intersubtree transmission properties. 

The second network, sometimes called a null network, provides zero inter­

subtree transmission conductances, but realizes parasitic conductances 

between the ports of a given subtree. The third network completes the 

requirement of the subtrees and realizes the remaining portion of the 

given port-admittance matrix. Since the properties of the linear tree 

are well established, the port voltages associated with the Y matrix are 

transformed over to the voltages associated with the linear tree. The 

synthesis method is quite complicated and definitely needs more extensive 

development if applied to (n+p) nodes, where p satisfies 2<p^n. As 

cited by Halkias and Lupo (20) other investigators unknown to the 

author, are investigating the generalization of this technique and are 

1. determining the necessary and sufficient conditions on 

admittance parameter matrices for their realizations on 
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multitree-port structures ; 

deriving a systematized procedure for the determination of 

multitree-port structures for (nxn) short-circuit admittance 

matrices ; and 

obtaining a more systematized procedure for synthesizing 

intersubtree null networks. 
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IV. REALIZATIONS OF RESISTIVE NETWORKS FROM 

PORT-ADMITTANCE MATRICES 

A. Two-Tree Synthesis Process with 

One Tree Containing Only One Port 

The realization of an order short-circuit admittance matrix, Y, 

corresponding to n ports of interest with a circuit configuration con­

sisting of (n+2) nodes requires the addition of one port. This port, 

which, in effect, is the addition of a cut-set, provides the connecting 

link between the two trees which completely contain the n ports of 

interest. The general port structure illustrating the connecting port, 

R^, is shown in Figure 4. 

The Y admittance matrix defined by this (nf2)-node structure of 

Figure 4 is represented in matrix form as 

Y = 

til fiz 

'21 

fla fir 

'nl 

'rl 

nn 

rr 

(18) 

where the column matrix y\^, i = 1, n, r, and its transpose y^^, 

j = 1, •••, n, r, represent the matrix elements corresponding to the 

additional port, R^. Matrix Y has dimensions (n+1) x (nfl). Also, both 

Y and Y are symmetric matrices. The partitioning of Y as in Equation 19 
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Figure 4. A general port tree structure composed of two subtrees 
connected by an additional port, R^, which may connect any 
node of one subtree to any node of the other subtree 
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corresponds to the partitions represented by Equation 20. In this 

particular instance and Yg^ are column and row submatrices with 

Y,,„ being a {ix]) submatrix. 

Y = 

Y = 

1 

1 -

Y 1 Y 
_BA 1 

1̂1 1̂2 • 

2̂1 2̂2 
• I » 

•1 • 

7„i • • • • : c i :  

ijrl • • • • 1 r̂j 

(19) 

(20) 

To determine the relationships of the elements in the Y matrix to the 

elements in the original Y matrix and thus observe the effects of adding 

the connecting port, R^, we may perform a pivotal condensation on y^^ or 

Y^^ and find that 

or that 

and 

y -y y'^y = y 
aa ab be b̂a 

yij - i=jj • 
j ^rr 

(21) 

n 

(yip(yrj 
y^ = ^ = y..; i^^j; j>i; i=l, •••, n; j=l, •••, n 
j r̂r 

(22) 
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where 

fil fiz în 

Y = (23) 
2̂1 2̂2 

y. 
nn 

Y._ = y', need not be restricted to column matrices as indicated by 

Equation 20. In network analysis the pivotal condensation manipulation 

as defined by Equations 21 and 22 permits the deletion of one or more 

cut-sets (ports). This, in turn, reduces the order of the admittance 

matrix by the number of cut-sets deleted. The new admittance matrix is 

then related to a new network configuration with the appropriate nodes 

of the original network which correspond to a deleted port being 

coalesced by that port deletion. One may reduce an (nri-k)x(ttfk) admittance 

matrix to an (nxn) admittance matrix with the removal of the k cut-sets 

and still retain the voltage-current characteristics of the n ports of 

interest. 

The pivotal condensation operation also becomes a very valuable 

tool in the synthesis problem. It permits the investigator to view the 

effects of adding cut-sets (ports) to an original network configuration. 

However, as shown in Equations 20, 21, and 22, the addition of one port 

to an (nxn) port-admittance matrix requires the determination of (nH) 

unknown quantities which satisfy the relationships of Equation 22. This 

necessary condition assures that the input-output features of the n ports 

are maintained. 
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For (nxn) short-circuit admittance matrices which can be partitioned 

into a special form, such as Equation 24, having dominant (n-l)x(n-l) and 

th 
(1x1) submatrices on the diagonal with a dominant n— row and column, 

the Slepian-Weinberg procedure (19) provides for a possible network 

realization. This procedure excludes having to solve for the (n-1) 

unknowns. It provides for the addition of a "fictitious" port which 

connects the one port corresponding to the (Lxl) diagonal submatrix to the 

remaining ports which are contained in a predetermined tree structure. 

1̂1 1̂2 

'21 

yi,n-i 

Vl,l ^n-l,n-l 

'̂ nl 

'In 

nn 

âa ' ̂ ab 

— 

b̂a i b̂b 

(24) 

In this section the following initial restrictions will be applied 

to the matrix, Y, providing for the utilization of the Slepian-Weinberg 

method. 

1. Matrix Y must be partitionable into a form with two matrices 

lying on the diagonal which must correspond to two Lagrangian 

subtree graphs containing (n-1) ports and one port respectively. 

According to the definitions of Section II these two sub-

matrices must have hyperdominant forms. 

1=1 

(25) 
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3. ^ 0 for i = 1, • • •, (n - (26) 

The proper form for the Lagrangian subtree structures and the 

connecting port together with the orientation of ports is shown in 

Figure 5. Before proceeding with the synthesis process we must be able 

to justify two important facts pertaining to the selected type of tree 

structures. 

1. The elements of the [(n-l)xl] submatrix, and those of its 

Clx(n-l)] transpose, are unaffected by the Lagrangian 

subtree structure corresponding to submatrix Y^. 

2. The realization of elements in Y^g and Y^^ do not cause parasitic 

realizations on the (n-1) Lagrangian subtree such that negative 

conductances are required to satisfy the total realization of Y. 

Taking into consideration that the off-diagonal elements in the n^ 

column and row are negative, the Slepian-Weinberg procedure allows us to 

form the 2n-node network of Figure 6 for the realization of the elements 

in row and column n. Later it will be shown that the possibility of a 

positive element may arise in row and column n if the orientation of a 

port in the (n-1)-port Lagrangian subtree allows it to occur. 

To show that Y^g = Yg^ is unaffected by a port structure associated 

with a Lagrangian tree configuration, a node from each of the (n-1) 

ports can be coalesced into one common node with the tree structure of 

Figure 7 evolving. The fictitious port, R^, and connecting branches are 

shown. Entering of the appropriate cut-sets on this graph allows the 

formation of the port-admittance matrix associated with the realization 

of the n^ row and column of matrix Y. 
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0\ ©, © 

Figure 5. Basic form for port structure with one isolated port 
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ynn" Z I y in 

2|yinl 

th 
Figure 6. 2n-node realization of the n— row and column of matrix Y 
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S 0 
n-

Ynn -][ IVin 
i = l 

Figure 7. Realization of the n— row and colvrain of matrix Y 
with (n-1) nodes coalesced into one common node 
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The new port-admittance matrix, Y , which includes the additional 
"l 

port, R^, appears as 

«lyij 

0 0 

-2lyinl -2|y. 2n' 

+2|yinl +2|y2nl 

0 +2|y2̂ | 0 

0 

0 

0 

-2|y 
In' 

-:|y2nl 

+2 
'In' 

+2|y, 
2n' 

+:|yn-l,nl -2|yn-l,nl 

(y„„+ 2 ly.„l)(-2 E ly.^l) -2|y_ 
n-l,n' 'nn i=l 

+2|yn-l,nl 

n-1 n-1 
(-2 s ly.̂ l) (4 s ly.̂ l) 

i=l i=l in' 

(27) 

By performing a pivotal condensation (Equation 22) on the (n+l)x(n-i-l) 

element of matrix Y , the involvement of parasitic terms with the 
&1 

(n-l)x(n-l) submatrix corresponding to the (n-1)-port Lagrangian subtree 

becomes apparent. Also, the unperturbed values of the elements in the 

n— row and column are observed. Thus, we may say that the row and 

column are realized by the branch conductances of Figure 7. The 

manipulations explained in this paragraph are now illustrated. 

The notation, Y , indicates that a pivotal condensation has been 
"l 

performed on Y^ with respect to the row and column corresponding to 

port R^. Thus, with Y^^ being symmetrical 
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In' 
n-1 ^ n-1 

itïnliyznl 
(-lyinl) 

z ly, 
i=l in' 

2 ly. 

(-
|yin'ly2n' 

2:".' 

(-!yi„l) 

i=l in' 

(+2|y. '2n' 
2n' n-1 

) 

(-ly2„l> 

(28) 

til —p 
Here it is obvious that the n— row and column of Y are identical to 

th ^ 
the n— row and column of Y. At this step of the synthesis process we 

can remove the portion of the network that is now realized (all branch 

conductances involved in cut-sets n and on Figure 7). This portion of 

the realization will be added in parallel later to yield the total 

realization of matrix Y. Using a simplified symbol notation for Y? we 
*1 

have in Equation 29 that 

11 

21 

12 

22 

(29) 

At this point it is appropriate to note that 
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where 

•^12 

Y - II 

^21 ^22 

^11 = ^AA - fll 

Ai2 

II 

• ̂12 
= 0 

1—
1 C
M
 
<
 = ^BA - ^21 

= 0 

^22 ^22 
= 0. 

(30) 

(31) 

The parasitic effects that the realization of the n~ row and column 

of Y have upon the conductance values associated with the (n-l)-port 

Lagrangian subtree are obtained from the Y? matrix, Equation 28, and 
1 

shown in Figure 8. The magnitude of the ij— element, i^j, of 
*1 

corresponds to the value of conductance connecting the noncoramon nodes 

of the 1— and j— ports. The parasitic driving-point conductance, L^, 

is derived from matrix as 

pii 

(n-1) 

^ IP,. 

j=l 

= L , a = i, i = 1, • • •, (n-1) 
ij a 

or 

n-1 

2 ly, 
i=l 

1=1 

in' 

(  S  l y .  1 +  S  l y - n t ) ]  =  L  , a = 1 ,  • • -, (n-1). (32) 
•an' "i^l'-m'i^^l" in 

Factoring the term [y^^l, we have 
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|y. 
2n' 

fini 
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2n 
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Figure 8. Parasitic realization of n— row and column of matrix Y 
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n-1 a-1 n-1 

n-1 

= L^, a = 1, • • -, (n-1). (33) 

The terms within the bracket of Equation 33 are easily reducible to 

n-1 
Z | y < _ t ,  thus giving 
i=l 

All of the preceding steps in the development of the synthesis 

procedure assures the important aspect of positive conductances. The 

final step must now be completed. From Equation 30, the remaining 

portion of the (nxn) port-admittance matrix to be realized corresponds 

to the submatrix. Once again, to insure having positive conductances 

for this portion of the network, the matrix must satisfy the necessary 

and sufficient conditions for realization upon the (n-1)-port Lagrangian 

subtree — A^^ must be hyperdominant. In terms of the elements of A^^, 

this means that 

i=l 

n-1 

j=l 

; i = 1, ' ' ', (n-1) and (35) 

2. a_j 3 0; i^j; i = 1, « • •, (n-1); j = 1, ' " (n-1). (36) 

The matrix A^^ appears as 
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(yii-2|yî | 

In' 
| y  

n-l 
2 |y. 
i=l 

'In' 

|2 

-) 

in' 

(yi2 

, 'yinllyznl 

(y 
l,n-l 

n-l 
2 |y.. 

, lyinllvl.nl, 

' n-l '' 

i=l in' jl 

*11 = 

(y. 
2 1  

l^lnl Î znl 

(y22-2|y,„l 

!y. 
2n' 

2n' 

2 

n-l 
z |y, 
i=l in' 

n-l 
2 I y 

i=l in' 

(yz.n-l 

, ly2nllvl.nl 

n-l •' 
2 ly, 

1=1 in' 

('n-l.l 

l^ln i l^n-l .nl 
n-l ^ 
2 I y 
i=l in' 

<yn-l,2 

, l5'2nllyn-l.nl, 

z |y< 

^^n-ljn-l 

i=l in' 
|y. 

i=l in 

(37) 

Also, from the basic definition of Y it is shown that i^j. 

Thus, the off-diagonal elements of the A^^ matrix must satisfy the 

following inequality. 

l^an'l^bnl 
y , + —%Yî ^ 0; aA; a=l, , (n-l) ; b=l, • • •, (n-l). 
ab n-l 

2 |y. 
i=l in' (38) 

Another necessary condition for realizability is that the diagonal 

elements of A^^ satisfy Inequality 39, 
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a. 1, • • •. (n-l). (39) 

Utilizing the conditions derived in Inequalities 38 and 39 in 

satisfying Inequality 35 it is shown that 

V • v' + Ji°"' 

- "sVjb + I i 0. a = 1, • • (n-1). (40) 

K 
If Inequality 38 is satisfied then Inequality 40 may be written in a 

slightly different form as shown by 

5'aa - ^l^anl + n-1^"' 

n-1 ly Ily^ 1 
+ Z (y . + —^ —) a 0, a . 1, ' ' (n-1). (41) 

5a 

Rearranging Inequality 41 gives 
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n-1 

 ̂ âb 

bî a 

21v1. 1 ̂ in i-" 1 ̂ an 1 \ ̂ j j'en 11 ̂ bn 1 
1=1 b=l 

bŷ a 
n-1 

s 0 

n-1 

n-1 iy«ni ^ ly, 
i=l an'._ '•'in' 

y..+ ̂  y.t, ^ s 0 
b=l at- n-1 

b=?^a ^ ly^m' 
i=l 

or 

n-1 

yaa + ^ab " l^an' ^ 0. ̂  = 1, • • -, (n-1). (42) 
b—1 
bî̂ a 

Noting that a^^b, it is observed that if a port-admittance 

matrix, Y, is realizable upon (n+-2) nodes utilizing the Slepian-Weinberg 

procedure with Lagrangian subtree formulation, then the original Y 

matrix must be of a hyperdominant form. Just as before, when the P. 11 

matrix was realized on the (n-1)-port Lagrangian subtree graph to 

illustrate the parasitic effect that the n— row and column realization 

gave, the matrix can now be realized. The transfer conductance 

between the noncommon nodes of the i— and j— ports are designated by 

the magnitude of the ij— element of given by Equation 43. 

, lyinllyinl , 
a,.. = |y\j + — I; i=l, ' ' , (n-2); j=2, •••, (n-1); 

z ly,.. 
i=l 

i^j; j>i. (43) 
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the left side is set equal to S^, a = 1, 

Likewise, the driving-point conductances are given by Inequality 40 when 

, (n-1). The network 

corresponding to the realization of matrix is shown in Figure 9. 

Superimposing the two networks that have been realized upon the same 

set of nodes one obtains the network of Figure 10. This is the full 

realization of the port-admittance matrix, Y, on (n+2) nodes. 

As mentioned previously in this section, a possible sign pattern 

might develop on the off-diagonal elements of the port-admittance matrix, 

Y, such that a star arrangement of the ports could still be realizable. 

Such an arrangement might be viewed as follows. The construction of a 

tree containing n ports with all ports coalescing at a common node and 

with orientation toward this common node satisfies the sign matrix of 

Equation 44. 

S = (44) 

If the direction is reversed on a port of this star tree the signs in 

the row and column corresponding to this port are changed also. Thus, 

with a given Y matrix possessing both positive and negative off-diagonal 

elements, if there is a possible port (or ports) direction change such 

that the sign pattern of Y (Equation 44) is satisfied, the matrix has 

possibilities of being realizable on this port structure. Of course, the 

dominant condition must be satisfied also. The above mentioned remarks 
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0 i,n-i 

3,n-i 

Figure 9. Realization of matrix A 
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Figure 10. A realization of the port-admittance matrix, Y, on (n+2) 
nodes 
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are referred to as a series of cross-sign changes by Brown and Tokad (5). 

This idea was discussed previously in the Literature Search Section. 

All of the synthesis procedures outlined in this section will still 

apply to a Y matrix with (+) and (-) off-diagonal elements if a finite 

number of cross-sign changes yield the sign matrix of Equation 44. In 

retaining the original sign matrix for Y with the corresponding orienta­

tion of ports the realization of the n— row and column of Y is the same 

except for Inequality 26, y\^^0, i = 1, • • •, (n-1). This condition is 

not necessary if the direction associated with the 2|y\^| element agrees 

or disagrees with the orientation of both cut-set i and cut-set n. 

The sign pattern for the elements of will be the same as the 

sign pattern for Y. Thus, the parasitic effects will not be altered by 

a sign change in the Y matrix if all other conditions are agreeable for 

realization. Subtraction of Y? from Y to determine the remaining portion 

of the port-admittance matrix, Y, to be realized will be performed in 

exactly the same manner as in Equation 30. If port i and port j form 

a linear subtree with port orientations in the same direction, then 

y^.so and the ij— element of will appear as 

y^j - n-1 > i=l, ' (n-1); (n-1). (45) 

Thus, Inequality 38 must be changed so as to read 

^ 0; a^b; a=l, (n-1); b=l, •••, (n-1) 
^ab n-1 

(46) 
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when the sign pattern demands it. If Inequality 46 is satisfied then 

Inequality 40 will be consistent regardless of the sign pattern of Y. 

This is true because the value of the term 

„«i.j 

doesn't change whether the directions of ports a and b are opposite or 

the same with respect to their common node. 

B. Example One Illustrating Qualified 

Port Removals from Lagrangian Tree Structures 

An example will illustrate the fact that not just any one of the 

n ports can be removed from an (n+l)-node realization involving an 

n-port Lagrangian tree by the Slepian-Weinberg procedure and still yield 

a realization with all positive conductances. From this example and 

other port-admittance matrices studied by the author a possible conjecture 

might be that a likely possibility for a port removal is a port associated 

with the off-diagonal element of smallest magnitude. 

For the example the port-admittance matrix is given by Equation 47. 

Y = 

8 -1 -4 -1 

-1 7 -1/2 -3 

-4 -1/2 8 -1 

-1 -3 -1 10 

(47) 

This matrix satisfies the sufficient and necessary conditions for realiza-

by an (nfl)-node network as shown in Figure 11. 

The (n+2)-node realization with the removal of port 4 progresses 

as follows. Column 4 and row 4 are realized by the network of Figure 12. 
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Figure 11. A Lagmagian tree showing conductance values 
for an (n+l)-node realization of Equation 47 
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2 

10 

Figure 12. Network with conductance values illustrating the 4— row 
and column realization of Equation 47 on (n+2) nodes 
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Equation 37 then gives the remaining portion of the Y matrix to be 

realized. Using the appropriate element values the matrix is 

given by Equation 48. 

'ii 

(8-2+ p 

(-1+ f) 

(-4+ j) 

(-1+ "i) 

(7-&i- f) 

( -  f  + 1 )  

(-4+ j) 

(- 2 + 5) 

(8-2+ i) 

or 

11 

31 2 
5 5 

2 14 
5 5 

19 + -i-
5 ^ 10 

.11 
5 

31 
5 

(48) 

Thus, in trying to synthesize A^^ upon the (n-l)-port Lagrangian 

subtree structure, it is found that the + l/lO element in the A^^ matrix 

requires a negative conductance of magnitude 1/10 to be placed between 

the noncommon nodes of ports two and three. This fact clearly illustrates 

the idea of not being able to remove any given port from an (n+l)-node 

Lagrangian tree realization to form an (n+2)-node network using the 

Slepian-Weinberg procedure. 

The (n+2)-node realization with port three removed is now illustrated. 

Interchanging columns 3 and 4 and rows 3 and 4 the Y matrix appears as 

Equation 49. 

Y = 

8 -1 -1 -4 

-1 7 -3 -1/2 

-1 -3 10 -1 

-4 -1/2 -1 8 

(49) 
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The portion of the network realized first (row and column 4 of 

Equation 49) is shown in Figure 13. Forming the matrix, 

(8-8 + ly) (-1 + (-1 + •̂ ) 

4l = (-1 + •^) (7-1 + (-3 + —) 

(-1 + •^) (-3 + -jj) (10-2 + 

or 

11 

32 7 3 
11 11 • 11 

7 133 32 
11 22 11 

3 32 90 
11 11 11 

(50) 

It is readily observed that A^^ is realizable on the Lagrangian subtree 

structure with ports 1, 2, and 4. Thus, the parasitic effects do not 

contribute to the extent of requiring negative conductances for the 

realization of the port-admittance matrix, Y. 

At this point it is instructive, as well as providing a check, to 

form the port-admittance matrix utilizing the cut-sets as shown in 

Figure 14. By performing a pivotal condensation on the diagonal element 

corresponding to the 5— port, the original Y^^^ port-admittance matrix 

is formed. These two matrices are given by Equations 51 and 52 

respectively as 
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I I  

Figure 13. Network with conductance values illustrating realization of 
the 4-^ row and column of Equation 49 
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I I  

Figure 14. Total realization with (nH-2) nodes of Equation 47 

Equation 49 
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and 

'5x5 

'4x4 

120 
11 

7 
11 

3 
11 

- 8 8 

7 
11 

' 155 
22 

32 
11 

- 1 1 

3 
11 

32 
11 

112 
11 

- 2 2 

- 8 - 1 - 2 21 _ 
2 

11 

8 1 2 - 11 22 

8 - 1 - 1 - 4 

- 1 7 - 3 - 1/2 • 

- 1 - 3 10 - 1 

- 1/2 

(51) 

(52) 

-G. .Two-Tree Synthesis Process Utilizing 

Complete Connecting Graph 

In Section IVA the port-admittance matrix, Y, was subdivided such 

that one submatrix corresponded to a 1-port Lagrangian subtree structure. 

When the matrix Y is partitioned with two submatrices on the diagonal 

which have dimensions fex^ with a^2 and (hx0 with b2:2 respectively, the 

Slepian-Weinberg formulation doesn't apply as readily. In this particular 

section and in Section IVF the author will provide synthesis procedures 

which preserve the Lagrangian subtree structure corresponding to the 

designated submatrices. Also, the necessary equations and inequalities 

which are required to solve for the unknown quantities that appear with 

the addition of a connecting cut-set will be given. 

The method of synthesis discussed next is also applicable to a 

matrix with a (Lxl) submatrix on the diagonal. For purposes of 
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simplification the examples used in Section IVD and Section IVE 

correspond to this type of partitioning of the port-admittance matrix. 

Here an (nxn) port-admittance matrix, Y, is considered which can 

be subdivided into two hyperdominant submatrices appearing on the 

diagonal. Thus, as stated before, these submatrices are realizable on 

the Lagrangian subtrees of the complete network graph. The matrix and 

the corresponding Lagrangian subtree network is shown by Equation 53 and 

Figure 15. 

Y = 

aa âf 

fa 

ga 

'ff 

ag 

'fg 

an 

na 

ĝf ĝg 

n̂f n̂g 

'fn 

gn 

'nn 

\a J 

(53) 

Further specifying the structure of the complete network graph, 

the common nodes of the two Lagrangian subtrees are connected by a port, 

R^, as illustrated in Figure 16. Associated with Figure 16 is a port-

admittance matrix with dimensions (n+l)x(nfl). The connecting cut-set 

contains all of the edges which pass from the nodes in one Lagrangian 

subtree to the nodes in the other Lagrangian subtree. For maximum 

flexibility a complete connecting graph is assumed. Thus, from each 

noncommon node in one Lagrangian subtree there emanates two branches 

of the network corresponding to a port of the other Lagrangian subtree. 

Considering f ports in one subtree and (n-f) ports in the other subtree 
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Figure 15. Basic structure for Lagrangian subtrees corresponding to 
Equation 53 

© @\ (b) 

Figure 16. Basic structure for Lagrangian subtrees including connecting 

port, 
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we have u = (f+l)(n-ff1) unknowns for which to solve. This number of 

unknowns is obtained as follows. A term, (n-f)f, equals the number of 

branches connecting every noncommon node of one subtree to each non-

common node of the other subtree. Additional terms, (n-f) and f, 

represent the number of branches connecting the noncommon nodes of one 

subtree to the common node of the other subtree. Then another conductance 

is placed between the common nodes of the two subtrees,. Adding these 

terms we obtain 

u = (n-f)(f) + (n-f) + f + 1 = (n-f)(ffl) + (ffl) 

or 

u = (n-ff1)(f+1) (54) 

The method of solving for the unknown conductances will now be 

formulated. First, Figure 16 is expanded to illustrate the unknown 

conductances and the cut-sets with their proper orientation as in 

Figure 17. The port-admittance matrix, Y , for Figure 17 is shown by 
*1 

Equation 55. The partitioning is directly related to the port structure 

of the Lagrangian subtrees and the connecting cut-set. Submatrix Yj^j^ 

corresponds to the subtree with ports a through f. Submatrix Y22 

corresponds to the subtree with ports g through n while submatrix Y^^ 

is associated with cut-set R^. Note that cut-set crosses each 

connecting edge or all of the unknown conductances. Therefore, 

\l I ^12 I ^l7 

"21 i 2̂2 i 2̂3 

y31 i y32 i y33 

(55) 
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Figure 17. Graph illustrating the two Lagrangian subtrees and their 
interconnecting set of unknown conductances 
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Forming from Figure 17 we have that 

1̂1 = 

(S conductances 
crossing cut­
set a) 

(S conductances 
crossing cut­
set b) 

(56) 

0 

(2 conductances 
0 crossing cut­

set f) 

Zero elements arise in matrix Y^^ since there are no conductances 

common to the cut-sets in the same Lagrangian subtree. Likewise, 

(E conductances • 
crossing cut- 0 
set g) 

2̂2 = 

(S conductances 
crossing cut­
set h) 

(E conductances 
0 crossing cut­

set n) 

(57) 

Continuing to form the submatrices of Y^^ we have the following 

forms for Y^g = Y^^, Y^^ = Y^^, Y^g = Y^g, and Y33. 

?12 = -

"7"- conductance 
common to cut­
sets a and g) 

(- conductance 
common to cut­
sets b and g) 

(- conductance 
common to cut­
sets a and h) 

(- conductance 
common to cut­
sets a and n) 

(- conductance 
common to cut­
sets f and g) 

(- conductance 
common to cut­
sets f and n) 
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?13 = ?31 

2 conductances common to 
cut-sets a and 

S conductances common to 
cut-sets b and 

Z conductances common to 
cut-sets f and R^ 

(59) 

y = y' 
23 32 

r S conductances common to 
cut-sets g and R^ 

- S conductances common to 
cut-sets h and R, 

S conductances common to 
cut-sets n and R, 

(60) 

Y„2 = conductances common to cut-sets R^] (61) 

Upon performing a pivotal condensation on in Equation 55 we have 

that 

(yii - ŷ 2 ̂ 33 y31) (y 12 1̂3 ̂ 33 y32) 

(Y, 21 23 33 31 yoi) (y22 - y, Y' ̂ Y ) 
23 33 32^ 

(62) 

Now, Y^^ = Y^^ of Equation 53 must be realized exactly by the 

conductances connecting the two Lagrangian subtrees. With this fact in 

mind, the obvious conclusion to draw is that 

\b - \'a = ^12 - "13 "33 ̂ 32 • (63) 
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Just as with the synthesis process of Section IVA, the realization 

of submatrices ~ ̂ 31» ^23 ~ ̂ 32' ^33 cause parasitic 

realizations upon the two Lagrangian subtrees. These parasitic realiza­

tions must not cause negative conductances to be used so as to fully 

realize Y. Therefore, the remainder of the Y matrix to be realized, Y^, 

is found as 

?! = 7 - 4, 

0 <\b-̂ 22"23̂ 33s2> 

(64) 

Utilizing Equations 56-61, 63 and 64, relationships involving the 

various unknown conductances can be formulated in conjunction with the 

elements of the port-admittance matrix, Y. Substituting Equations 58-61 

into Equation 63 yields 

\b = 

(ZaR. ) (SgR, ) (EaR ) (ZhR ) 
(-ag4- ^ )(-aW- ^ ) 

sr, 

(ZbR )(SgR ) (ZbR )(ShR ) 
(-bgf ^ -)(-bh+ ^ ) 

zr, 

(ZfRn)(SgR, ) (ZfRn)(ZhR^) 
(-fg+ ^ ) (-fhf ^ ) 

(-anf 
(zar̂  (snr̂ ) 

ei 

(EbR,)(BiR^) 

(ZfRi)(ZnR ) 

(65) 

Here the author uses a simplified notation. A term such as (ag) 

refers to the conductance common to cut-set a and cut-set g. The term 

ZaR^ refers to the sum of conductances common to cut-set a and cut-set R^. 
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Also, refers to the sum of all conductances connecting the two 

Lagrangian subtrees. Now, the general expression for the ij— element 

of Equation 65 where cut-set i and cut-set j are in separate Lagrangian 

subtrees can be written as 

-(conductance (Z conduct- +(Z conduct- (Z conduct-
common to ances not ances in ances in 
cut-sets in cut-set cut-set i cut-set j 
i and j) i or cut- and not in and not in 

set i) cut-set j) cut-set i) 
^ij E conductances 

common to cut­
set 

As expected, the matrix of Equation 65 is not symmetrical. 

Working with the off-diagonal elements of and (conductances 

common to cut-sets in the same Lagrangian subtree) and applying the 

necessary and sufficient conditions, for realization, the following 

inequalities are determined. 

- ̂ 11 + ?13?;3%31 ̂  ° (67) 

\b " ̂ 22 2̂3̂ 33̂ 32 ̂  ° 

However, the off-diagonal elements of matrices Y^^ and Y22 are equal to 

zero. Thus, Inequalities 67 and 68 reduce to 

\a 1̂3̂ 33̂ 31 ̂  ° 

and 

b̂b 2̂3̂ 33̂ 32 ̂  

After making the proper substitutions and performing the indicated 

matrix operations, Inequalities 69 and 70 produce submatrices containing 

the general ij— element. 
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(S conductances common (S conductances common 
to cut-sets i and to cut-sets j and 

V V 
^ij ̂  S conductances common ^ j» 

to cut-set 

with cut-sets i and j located in the same Lagrangian subtree. At this 

point the fact should be reviewed that the orientation of the ports 

of the Lagrangian subtree in conjunction with the signs of the elements 

of matrix Y dictate that is negative. The second term of Inequality 

71 will always be positive. Therefore, the parasitic coupling effect — 

second term of Inequality 71 — between ports located in the same 

Lagrangian subtree cannot be greater than |y\j|. 

The parasitic driving-point effect should be considered at this 

stage of the synthesis process. This is obtained by the comparison of 

the diagonal elements of Y and the contribution of the pivotal condensa-

—p 
tion calculation upon the diagonal elements of Y . Using Equations 

"l 
56-61 it is easily shown that the pivotal condensation operation produces 

terms on the diagonal of "ï? having the following form. 
1̂ 

(S conductances common to 
(E conductances cut-set i and R^)^ 

common to cut- - — — (72) 
. J r> \ conductances common to 

sets 1 and RJ ^ . 
1 cut-set R^) 

or 

(S conductances common (S conductances not common 
to cut-sets i and R^) to cut-sets i and R^) 

(S conductances common 
to cut-set R^) 

(73) 

Now, considering Equation 64, the diagonal elements of Y^ must all 

be positive. Thus, Inequality 74 must be satisfied. The set of n 
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inequalities obtained from 

(S conductances (S conductances 
common to cut- not common to 
sets i and R^) cut-sets i and R^) 

^ii (S conductances common ^ ̂  
to cut-set 

is not used to solve for the unknowns since it becomes a part of another 

set of n inequalities involved with the magnitude conditions associated 

with the Lagrangian subtree networks. The latter set of n inequalities 

evolves from matrix Y^. Using Inequalities 71 and 74 and remembering 

that y\j^O with cut-sets i and j in the same Lagrangian subtree, we have 

the set of n inequalities from 

(S conductances common to(Z conductances not common to 
cut-sets i and R^) cut-sets i and R^) 

^ii (Z conductances common to 
cut-set R^) 

(S conductances (S conductances 
common to cut- common to cut­
sets i and R^) sets j and R^) 

^ ^ij (S conductances ^0. (75) 

common to cut­
set R^) 

Simplifying Inequality 75 we have that 

(Z conductances 
common to 
cut-sets i 

(S conductances (Z conductances 
not common to - common to cut-

and R^) 

^ii ̂ ij (S conductances 
common to 
cut-set R^) 

cut-sets i and sets j and R^) 
^ 0. (76) 

To complete the synthesis process the conductance values which are 

placed between the noncommon nodes located in the same Lagrangian subtree 

and the conductance values placed across the port terminals are required. 
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When Inequality 71 is set equal to , it represents the conductance 

value that is common to cut-sets i and j of a Lagrangian subtree. In 

the same manner, when Inequality 76 is set equal to L^, it represents the 

conductance value that connects the i— node to the common node of a 

Lagrangian subtree — the shunt conductance of port i. 

The number of equations and inequalities that can be obtained from 

an (nxn) port-admittance matrix, Y, with one Lagrangian subtree containing 

f ports and the other Lagrangian subtree containing (n-f) ports is 

_n(^l) ̂ Referring to Equation 53, matrix contributes f(n-f) 

equations which are required to be satisfied exactly. Equation 66 

yields this set of equations. Inequality 71 provides 

f^-f (n-f)^-(n-f) _ 2f^-2nffn^-n 
2 2 2 

inequalities. In addition. Inequality 76 gives n inequalities which are 

used to solve for the unknown conductance values. 

In comparing Equation 54 (u = (n-ff 1) (f+1)) with it is 

interesting to note that greater than or equal to the number 

of unknown conductances for all values of n except n = 2. For finding 

the maximum number of unknowns for a particular n one can use 

u(f) = (n - f + 1) (f + 1). (77) 

Taking the derivative of u(f) with respect to f and setting the result 

equal to zero yields 

n - 2f = 0. 
df 

Solving for f in terms of n, f = •j. By performing the second derivative 

one finds that f = ̂  represents the value of f which gives the maximum 

value for Equation 77. Substituting f = ^ into Equation 77 yields 
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= 2i±fl±_4 (78) 

which is greater than only for n = 2 corresponding to allowable 

values for f. The network realized by the synthesis procedure just 

explained is shown in Figure 18. 

D. Example Two Illustrating (nf2)-Node Synthesis of a 

Port-Admittance Matrix Which is Nonrealizable by an 

(nfl)-Node Lagrangian Tree 

The following example illustrates the method of synthesis as 

described in Section IVC. A (3x3) port-admittance matrix is given by 

Equation 79. 

200 145 108 
24 24 24 

_ 145 m 108 
24 24 24 

108 108 192 
_I 24 24 24_ 

It is readily seen that a network with (nfl) nodes based upon a 3-port 

Lagrangian tree cannot be synthesized from Y because of the nondominant 

condition. But the Y matrix can be partitioned such that there is a 

(2x2) submatrix on the diagonal and a (1x1) submatrix on the diagonal 

which correspond to a Lagrangian subtree with two ports and a Lagrangian 

subtree with one port respectively. In Figure 19 ports 1 and 2 are 

shown in one Lagrangian subtree and port 3 is shown in the other 

Lagrangian subtree. The connecting port corresponding to cut-set 4 

along with the complete set of six connecting conductances are also shown. 

The six conductances represent the unknown quantities. Equation 66 and 
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Lof 

L-gh 

©\  ® 

Figure 18. (n+2)-node network with 
based on two Lagrangian 
port-admittance matrix 

unidentified edges as unknowns 
subtree structures for a realizable 
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Figure 19. Graph illustrating the two Lagrangian subtrees with their 
set of six unknown connecting conductances 
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Inequalities 71 and 76 are used to solve for the six unknowns. From 

Equation 66 one gets 

108 - + ̂ 4(̂ 2+̂ 5) 

24 6 

and 

108 • ̂2(̂ 4+̂ 6) + ̂ 3(̂ 1+̂ 5) 

(80) 

+ # V  ̂• (si) 

Inequality 71 yields 

24 0 

Inequality 76 yields the following three inequalities. 

(33) 

W-#-  ̂ (^5+^6)  ^ °  (34)  

i#r + 0 - (y3+vy6> ^ ° (85) 
S y. 
i=l 

One set of values which constitutes a solution for the preceding equations 

and inequalities is y^=y2=10, y2=y4=y5=y6=l. 

Continuing with the synthesis method described in Section IVC, the 

conductance y^ common to cut-sets 1 and 2 is found by taking the magnitude 
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of the left-hand side of Inequality 82 and designating it y^. Likewise, 

y^, y^, and y^ representing the shunt conductance values of ports 1, 2, 

and 3 respectively are found by taking the value of the left-hand sides 

of Inequalities 83, 84, and 85. The complete realization of Y 

(Equation 79) is shown in Figure 20. 

As a check on the realization of Figure 20, the port-admittance 

matrix can be formed as in Equation 86. 

4x4 

321 
24 

- 1 

• 10 

- 1 

12 

- 1 

• 10 

- 1 

14 

11 

11 

- 12 

(86) 

_11 11 - 12 2_a_ 

Upon performing a pivotal condensation on the y^^ element of Equation 86, 

the original Y matrix (Equation 79) is obtained. 

E. Example Three Illustrating (n+2)-Node Synthesis of a 

Port-Admittance Matrix Which is Nonrealizable by an 

(nfl)-Node Network 

In the previous example, even though the port-admittance matrix was 

not realizable upon an (nfl)-node Lagrangian tree, it was realizable 

upon an (rri-l)-node linear tree. The author would now like to consider 

the classic example which is not realizable by any (nrl-l)-node network. 

The port-admittance matrix is given by Equation 87. 

"9 - 5 T 

Y = - 5 9 1 (87) 

5 19 
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Figure 20. Complete realization on (nf2) nodes for Equation 79 with 
conductance values given 
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The network that is finally synthesized is shown in the cited 

reference (25). This section illustrates that the same network realiza­

tion may be obtained by the synthesis methods described in Section IVC. 

The Y matrix is partitioned with ports 1 and 2 in one Lagrangian subtree 

and port 3 in the other Lagrangian subtree. The basic structure is 

illustrated in Figure 19 and is not duplicated here. 

Upon using Equation 66 and Inequalities 71 and 76, the six unknown 

conductances are placed in the following relationships. From Equation 66, 

- yi(73+75) + 

6 
2 y 

and 

5 ^ (88) 

z y. 
i=l ^ 

Inequality 71 yields 

-  5 .  .  0. (90) 

Inequality 76 yields the following three inequalities. 

(72+73) (75+75) 
9 - 5  s  0  ( 9 2 )  

2 7, 
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6 
(93) 

A set of values that constitutes a solution for the Equations and 

Inequalities 88-93 is 71=75=0» 72= 7^= 7^=17, and y^= 

As with the previous example, the conductance 7^ common to cut-sets 

1 and 2 is found by taking the magnitude of the left-hand side of 

Inequalit7 90 and designating it y^. Also, y^, y^, and y^ representing 

the shunt conductance values of ports 1, 2, and 3 respectively are found 

by taking the values of the left-hand side of Inequalities 91, 92, and 93. 

Figure 21 shows the complete realization. 

Forming the port-admittance matrix of Figure 21, Equation 94, and 

then performing a pivotal condensation on the 7^^ element, the original 

Y matrix (Equation 87) is obtained. 

4x4 

17 0 0 17 

0 
97 
8 

17 
8 

85 
8 

0 
17 
8 

97 
8 

85 
8 

17 
85 
8 

85 
8 

289 
8 

(94) 

These steps serve as a check for the realization of Y. 

F. K-Tree Synthesis Process Utilizing Lagrangian Subtrees 

Proceeding to a much more general problem, the author wishes to 

consider not onl7 the possibility of an (nxn) port-admittance matrix, Y, 

being subdivided with two hyperdominant submatrices on the diagonal, but 

k hyperdominant submatrices on the diagonal. • Once again, these 
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Figure 21. Complete realization on (nf2) nodes for Equation 87 with 
conductance values given 
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hyperdominant submatrices correspond to Lagrangian subtrees with the 

ports directed toward the common nodes. As indicated previously there 

is the possibility of positive off-diagonal elements in these submatrices 

if the port directions permit. Under the prescribed conditions, the Y 

matrix takes on the following form. 

^11 ••• ^la I ^l.a+l . ••• ^Ib |''''|yi,n-r * *' ^In " 

Y = 
^al ' * *  ^aa |  ^a,afl ^ab j *'"|^a,n-r ^an 

TT... ^afljl ' ^a-t-l,a ^afl,a+l "* ̂ a+l,b ^a+l,n-r ^a+l,n 

^bl • • •  ^ba I  ̂ b.a+l • • •  ^bb _il"*|^b,n-r "" ̂ bn 
••111» ••—1 —i— —!• 11 I— •• I —•• • — II — • ' 

_L_ I : I ''I : 

^n-r,l *" ̂ n-r,a ' ̂ n-r,af 1 ' ^n-r,b ""'^n-r,n-r ^n-r,n 

^nl ^na j ^n,a+l ^n,b j*"*|^n,n-r *" ̂ nn 

(95) 

Corresponding to Equation 95, Figure 22 illustrates the form of 

the graph of Lagrangian subtrees with the connecting ports, 

\t2' ^n+k-l' linking the common nodes in a linear subtree 

arrangement. The cut-sets are also shown. A new port-admittance matrix, 

Y^ with dimensions (nfk-l)x(ntk-l) associated with Figure 22 can now 

be defined as 
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n + l 

n + 1  n f  

N 

Figure 22. Graph of k Lagrangian subtrees and (k-1) connecting ports 
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Partitioning into a more compact form we have 

^11 ^12 

^21 *22 

(97) 

where the submatrix refers to the portion of the matrix 

designated with x elements. Since can be written in terms of R^g, 

*21' *22  ̂as 

Y = Rii - &i2*22*21 

or 

Eu = Y + (98) 

we have only the following number of unknowns in the Y^_^ matrix — 

2 
Number of unknowns Z = n(ki-l) + -ÛL-llZzXk—12. + k-1. This is simplified 

to Equation 99, 

.2 k 
Z = n(k-l) + *2— 2' (99) 

In contrast to the method presented in Section IVC where only one 

cut-set was added, the elements of the matrix Yj^ ^ are the unknown 

quantities and not the circuit conductances. Perhaps one could use 

Equation 98 and satisfy the off-diagonal submatrices exactly and carry 

out the synthesis procedure utilizing the idea of parasitic effects while 

realizing the various k Lagrangian subtree networks. More will be 

mentioned concerning the merits and limitations of this procedure in 

Section V. 

Now the author wishes to pursue a new method of synthesis for the 

Y matrix with k submatrices on the diagonal. The principles associated 

with Lagrangian tree synthesis methods will still be utilized. The 



www.manaraa.com

77 

development of the procedure for the general Y matrix follows. 

A port representation of the resistive network in question is shown 

in Figure 22 with the port equations having the form. 

I(t) = \_iV(t) 

or 

"h" 
1 

1 
^12 

^1 

n̂_ 
- 4-

\ 
0 

1 

^21 ^2 

Vl 

0 1. 

If the port-admittance matrix, Y^_^, is realizable upon the tree of 

Figure 22 it is realizable upon a complete graph (each node is connected 

by a branch of the network to every other node) corresponding to this 

tree. The complete graph will provide the maximum flexibility for 

realization since zero-valued conductances will be allowed. Using the 

principles of a complete graph it is readily apparent that a new 

Lagrangian tree can be formed upon the entire set of nodes in Figure 22. 

The next step is to perform a linear transformation from the graph 

corresponding to the connected set of k Lagrangian subtrees to a graph 

of only one Lagrangian tree while preserving the original port 

relationships. Consider this new Lagrangian tree to take the form of 

Figure 23 with the designated cut-set notation. The common node of this 
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:n-r)' 

(n-r)" ml 

n+i 
n + i 

n+k-

n+k-

Figure 23. Graph of one Lagrangian tree utilizing all (n+k) nodes of 
the network 
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Lagrangian tree is an arbitrary choice and affects only the form of the 

transformation matrix. 

Figure 24 illustrates the superimposing of Figure 23 on Figure 22 

to form a new graph. The tree of the new graph. Figure 24, is chosen as 

the branches of the Lagrangian tree of Figure 23. Then the cut-set 

matrix, Q, for the new graph can be easily formed. It is given by 

Equation 101 which maintains the various Lagrangian subtree partitionings 

associated with Figure 22. Matrix Q appears as Equation 101 with the 

matrix I representing an (n+k-l)x(nfk-l) unit matrix.(Equation 101 

appears on the following page). 

Writing matrix Q as 

Q = [Qii Qig] (102) 

with = I, the new port-admittance matrix, Y^_^, is given as 

\-l ̂  ̂ 12\-1^12' 

T 
The Y, , matrix is now the matrix to which the Lagrangian tree principles 

k- i 

are applied. Matrix Yj^_^ has dimensions (nfk-l)x(rtfk-l). Thus, the 

hyperdominant restriction provides for a set of l)^(nfk 2)_ 

In addition, the dominant condition, as applied to the diagonal elements, 

contributes (nfk-l) inequalities. The total number of inequalities that 

are available to solve for the unknown terms in Equation 96 are 

(n4-k-lMiri-k-2) + (104) 

It is easily shown that the number of independent inequalities given by 

Equation 104 will always be greater than the number of unknown terms 

indicated by Equation 99. 
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Figure 24. Two different trees whose combination forms a new graph 
covering the same set of nodes and providing for the 
formation of the transformation matrix, Q 
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Since is symmetrical and since there is a unit submatrix 

contained in matrix the submatrix of will be unchanged by 

the matrix operations of Equation 103. Remembering the established 

matrix partitions the author wishes to write Y^_^ as Equation 105 and 

in a more compact form — Equation 106. 

'k-1 

^1 ̂ 12 

21 

kl 

Xrl Xr2 

^Ik I ^Ir 

2r 

rk 
X 
rr 

(105) 

'k-1 

11 12 
- 4- — 

"21 "22 

(106) 

Thus, = R^^ with the submatrices j> i=l, •••j k; j=l, ..., k 

of Equation 105 being exactly the same as the corresponding submatrices 

of R^]^ in Equation 96. After performing the linear transformation 

the submatrices and 1^2 have their forms as shown by Equations 

107-110. 

' b 
2 

i=afl 

Xlr - X^l = 

[(",_^L,*li)"^l,n+l+^l,n+2] 

n 

[(- S Xii)-?! nfk-l^ 
i=n-r 

n 
[(- 2 x_.)-r +r 

i=a+l ai a,n+l a,n+2 
,]....[(- S x_.)-r 

i=n-r ai a,nrfk-l 

(107) 
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%2r - Xr2 " 

Xkr " Xrk 

"'^aH-l,n+l'^^aH-l,rri-2^ 

"fb,n+l*^b,nf2' 

[(- Z : 
i=a+l n-r,i 

J 

^n-r ,i]rl-l'*'^ii-r ,04-2^ 

,n+l'^^n ,iri-2^ 

n 

-r 
af l,TH-k-l] 

n 
[(- 2 x^i) 

i=n-r 

"^b,n+k-l] 

-r ,, 1 ] 
n-r,nfk-l 

^n^nfk-l^ 

(108) 

(109) 

The form of the pre- and post-multiplying matrices contribute to a 

more complicated form for than for the submatrices = L^j^. 

Matrix appears as in Equation 110. 

After performing the linear transformation, we have a matrix, namely 

Y^_2, which is realizable by the Lagrangian tree synthesis procedures 

if it is realizable at all. Also, at this point there are still 

unknowns in the x^^ notation where i and j range from 1 to n. These can 

be eliminated with the proper substitution and utilization of Equation 98. 
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With reference.to Equations 96 and 97 we have that 

nfk-l - n+k-1 

*-ii " Yii + ^ r. (R,,)" 2 r i=l, n (111) 
p=n+l p=n+l 

and 
n+k-1 ^ n+k-1 

" p^l 'iP ("22)' -1 

2=1, ..., n. (112) 

After these substitutions have been made. Equation 106 will have 

all of its elements in terms of y^j> i=l, •••j n; j=l, n and the 

unknown quantities, r^^; s=l, n+k-1; t=l, n+k-1. Of course, 

y.. = y.. and r ^ = r^ . The set of inequalities that must be satisfied 
•'ij •'ji St ts 

for a network realization with reference to matrix are given by 

l_/j, 3 0; iVj'; i'=l'» (n+k-1)'; j'=l', ..., (n+k-1)' 

(113) 
and 

(iri-k-1) ' 
1././^ S 11 / /I ; i'=l , ..., (n+k-1)'. (114) 
X 1 1 J 

j'=l' 

If these (n+k-1) inequalities can be satisfied, will be 

realizable with positive conductances; therefore, the Y matrix will also 

be realized. Just as with the previous synthesis methods |1././| 
^ J 

represents the conductance common to cut-set i' and cut-set j' of the 

Lagrangian tree in Figure 23. The conductance which is common to cut-set 

i' and connects to the common node of the Lagrangian tree of Figure 23 

is given by 

(n+k-1) ' 
1 .  / .  /  ~  2 11 /. / I 
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To further clarify how the realization of Y is obtained by the realiza­

tion of Y^_2» the conductance common to cut-set n' and cut-set in 

Figure 23 is the same conductance that appears across the n~ port of 

interest associated with the port-admittance matrix, Y. Likewise, the 

conductance common to cut-sets n' and (n-r) ' is the same as the 

conductance connecting the noncommon nodes of ports n and (n-r) which 

are located in the Lagrangian subtree with reference to matrix Y. 

G. Example Four Utilizing K-Tree Synthesis of a 

Port-Admittance Matrix Which is Nonrealizable by an 

(nfl)-Node Lagrangian Tree 

The method of synthesis as described in Section IVF can also be 

used to realize the port-admittance matrix given by Equation 79 and 

presented here as Equation 115. 

Y = 

200 145 108 
24 24 24 

145 167 1 108 
24 24 1 24 

108 108 1 192 
24 24 1 24 

(115) 

The author will use the same notation as in Section IVF. Partitioning Y 

as in example two we have k=2. With k=2 and n=3, Equation 99 gives the 

number of unknowns as four. These will be designated as the elements 

tin "*• 
in the 4— row and column of Y^ — Equation 96. Remembering the 

symmetry of matrix Y^_Equation 116 gives 
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'k-1 
= Y]_ = 

k=2 

*11 *12 *13 ^14 

*12 *22 *23 ^24 

*13 *23 *33 ^34 

^14 

(116) 

By utilizing Equations 111 and 112, the terms (i=l,2,3; j=l,2,3) 

can be replaced by equivalent expressions involving the unknown quantities 

and the elements of the port-admittance matrix, Y. Thus, can be 

written as 

^1 = 

.1^ ^14^24. .108 ^14^34. 
( 24+ 24 ^ 

.2 r r 
,108 , 24^34v 
(24 ) 

(. 145 + (167 ̂  !2^x 
(  2 4 +  r , ^  ) ( 2 4 + r ^ )  

2 
. 108 . f14^34.,108 . ^24^34. ,192 , ^34 , 

14 '24 •34 

14 

'24 

•34 

44 

(117) 

Figures 22, 23 and 24 are now applied to the example. These are 

shown by Figures 25, 26, and 27. The cut-set matrix, Q, is constructed 

from Figure 23 as 

^ ^^11 ^12^ 

1000 I 10 0 0 
0100 ,01 0 0 
0010 'oo 1 0 
0001 I 00-1-1 

(118) 

Performing the matrix operations of Equation 105 on the matrix Y^, the 

following matrix is formed and is designated as Y^. 
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Figure 25. Graph of two Lagrangian subtrees with one connecting port 

Figure 26. Graph of one Lagrangian tree utilizing all five nodes of the 

network 
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Figure 27. Superposition of Figure 26 on Figure 25 providing for the 
formation of the transformation matrix, Q 
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(200 + 34) 
( 14 

(_ 145 + ̂ 14^24. , 108 ^4^34 108 
^ 24 r,, ''*• 24 ''''24 

44 

> 145 . =^4^24..167 , ^24. ,108 , ^24^34 

^14^34 

^44 

- =14) 

. , 108 ^24^34 

" ^24) 

108 =14=34) .108 1̂ 4̂ 34) ,192 + % 
( 24 + )(24 ^ ^24 +rj 

/. 192 ._M 
24 

- =34) 

,108 
'24 

=Ï4^34 

- '14> 

. 108 =24^34 , 192 =34 
<-^- — <--24 

• '24^ • ̂34) 

(m+ :% 

" V 

+ 2f34+'44) 

(119) 

One should note here that Equations 106-110 give directly when the 

proper substitutions corresponding to Equations 111 and 112 are carried 

through. 

Matrix Y^ must satisfy the necessary and sufficient conditions for 

realization upon the Lagrangian tree of Figure 26. Thus, Inequalities 

113 and 114 must be satisfied. A solution that exists for a network 

realization is r^^ = r^^ = 11, r^^ = - 12, and r^^ = 24. Inequality 113 

yields the following set of inequalities when the values for the unknown 

quantities are substituted. Thus, 

- = -1^0 (120) 

- = - 10 S 0 (121) 
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,,0 (122) 

+ ̂  . . 11 = _ 1 ̂  0 (123) 

- ̂  - 11 = - 10 3 0 (124) 

- ̂  - ("24) - (-12) = - 2 3 0. (125) 

Likewise, Inequality 114 yields the following set when the values of the 

unknown quantities are substituted. Here the magnitudes of the appropriate 

Inequalities 120-125 are used. 

 ̂ a 1 + 10 + 1 = 12 

or 

or 

or 

^ > 12, (126) 

1+ 1+ 10.12 

12 = 12, (127) 

+ ("2^) 2 10 + 1 + 2 = 13 
/4 Z4 

14 > 13, , (128) 

2 
W + *^"24^ + 2(-12) + 24 a 1 + 10 + 2 = 13 

or 14 > 13. (129) 

Therefore, can be written as 
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321 
24 

- 1  

-10 

-1 

-1 -10 -1 

12 -1 -10 

-1 14 -2 

-10 -2 14 

(130) 

Realizing matrix directly upon the Lagrangian tree structure of 

Figure 26 the network of Figure 28 is obtained. The port representation 

corresponding to the original port-admittance matrix is maintained, thus 

the realization of also provides a realization for Y. The author 

wishes to note that the identical realizations of Figures 20 and 28 are 

by no means an indication of a unique realization for the Y matrix. 

H. Example Five Utilizing K-Tree Synthesis of a 

Port-Admittance Matrix Which is 

Nonrealizable by an (n+l)-Node Network 

The method of synthesis presented in Section IVF will be applied to 

the port-admittance matrix of Equation 131 

9 - 5 I 5 

Y = - 5 9 1 (131) 1 
which is not realizable by any network with (nfl) nodes. With the 

indicated partitioning of Y we have k=2. Thus, there are four unknown 

quantities for which to solve. Keeping in mind the symmetry condition. 

the matrix Y^^ formed as 
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Figure 28. Complete realization for Equation 115 with k - 2 utilizing 
k-tree synthesis method with conductance values given 
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"^11 *12 *13 

*12 *22 *23 ^24 

*13 *23 *33 ^34 

^14 ^24 ^34 ^44 

(132) 

Upon making the proper substitutions as in Equation 117 (example four), 

can be rewritten as 

^1 = 

(9 + % + 
44 44 44 

(- 5 + ̂ -î ) (9 + ̂ ) 

44 44 

(5 + 

14 

=14^34 

4̂4 

) (1 + 

•24 

=24̂ 34 

4̂4 

(1 + ̂ 24=34) 

4̂4 

) (9 + ^) 
4̂4 

34 

14 

'24 

34 

4̂4 

(133) 

Since the port structure of the network corresponds exactly to that 

of example four the transformation matrix is exactly the same and 

Figures 25-27 are applicable. Therefore, Equation 118 is applied and the 

figures are not duplicated here. Performing the appropriate linear 

transformation, or utilizing the derived general form for matrix Y^, 

this matrix is given as 
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14, 1̂4̂ 24 
(9 + -^) (-5 + -f^)(5 + 

4̂4 4̂4 

1̂4̂ 34 

4̂4 
•) (- 5 -

(- 5 + 
1̂4̂ 24 
r •)(9 + -̂ ) (1 + 
44 44 

=24^34 

'44 
) (- 1 -

=14^34 

4̂4 

^24^34 

(5 + ̂ ) (1 + ̂ ) (, + % 
4̂4 4̂4 4̂4 

"44 

•34 

" =14) 

" =24) 

(- 5 - (- 1 - (- 9 - ̂  (9 + ̂  + 2r + r ) 
4̂4 4̂4 4̂4 '44 

- =14) 2̂4) 3̂4) 

(134) 

If Inequalities 113 and 114 are satisfied, then matrix satisifes 

the necessary and sufficient conditions for realization upon the 

Lagrangian tree of Figure 26. One solution that provides for a network 

realization is r 14 = 17' ̂ 24 = ¥' '34 ^ r 8 ' 44 
289 
8 • 

When these 

values for the unknown quantities are substituted into Inequalities 113 

and 114 the following results are obtained. From Inequality 113 

- 5 + 
(17) (y) 

289 
8 

=  0 ^ 0 ,  (135) 

5 + 
(17) (- y) 

289 
8 

=  0  z  0 ,  (136) 
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("g") (- Y") 17 
^ 28? " IT ̂  (137) 

8 

(17) (- y) 
5 - 289 = - 17 3 0, (138) 

and 

8 

A (- % 
1  -  ^  ¥ = " ¥ ^ ° '  ( 1 3 9 )  

8 

(- 21)2 
9 - 2̂ 9 " 2 ̂  (140) 

8 

Using the proper magnitudes from Inequalities 135-140 in Inequality 114 

we have 

9 + a 0 + 0 + 17 = 17 

~8~ 

or 17 = 17, (141) 

9 + -289- ̂  ° + ir + 

8 

f > v' (142) 

(- 2;i)2 

zA + f 
8 

2Z. > 12, (143) 
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or 

( i  8 5 \ 2  

9 + --2::-- + TT) + lar à 17 + IT + # 
8 

27 = 27. 

27 

(144) 

Using the foregoing results, becomes 

^1 = 

17 

17 

97 
8 

17 
8 

17 
2 

8 

iZ 
8 

3 
2 

17 

17 
2 

3 
2 

27 

(145) 

Figure 29 shows the realization of the matrix Y^ upon the Lagrangian tree 

of Figure 26. Once again, the port representation corresponding to the 

original port-admittance matrix is maintained. Therefore, the realization 

of Y with (nrl-2) nodes is achieved. 
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Figure 29. Complete realization for Equation 131 with k - 2 utilizing 
k-tree synthesis method with conductance values given 
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V. SUMMARY AND SUGGESTED RESEARCH CONSIDERATIONS 

This investigation delves into the synthesis problem of resistive 

networks containing (nfp) nodes where 2^p^n. The port characteristics 

of the realized network are defined by a given (nxn) port-admittance 

matrix, Y. All three of the methods discussed rely upon the basic 

principles of network topology as applied to the star (Lagrangian) tree. 

In the first method which utilizes the Slepian-Weinberg procedure 

the necessary and sufficient conditions for realization of an (n+2)-node 

resistive network with a Lagrangian subtree containing (n-1) ports compel 

the original port-admittance matrix to be hyperdominant. It is also 

shown that the hyperdominant condition can be relaxed to a dominant 

condition if a possible sign pattern of Y appears such that Y is 

potentially hyperdominant (i.e., a matrix that is hyperdominant after a 

finite number of cross-sign changes). An example clearly illustrates 

that the magnitudes of the elements in the Y matrix govern the removal 

of a particular port. One of the valuable features of this synthesis 

method is the elimination of the necessity for solving for any unknown 

quantities throughout the entire synthesis process. 

The second method of (nf2)-node synthesis applies to any port-

admittance matrix which can be partitioned such that there are two 

submatrices which are hyperdominant or potentially hyperdominant on the 

diagonal. The two corresponding Lagrangian subtrees are connected by the 

unknown quantities (conductances) which connect each node in one subtree 

to every node in the other subtree. The necessary conditions for 

realization are based upon satisfying the appropriate inequalities and 
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equalities which are derived from the principles of the Lagrangian subtree 

synthesis and by precisely-satisfying the element values of the off-

diagonal submatrices of the Y matrix. 

A general method of synthesis is presented which allows for the 

partitioning of the port-admittance matrix into a matrix with k sub-

matrices on the diagonal. Once again, these submatrices must be hyper-

dominant or potentially hyperdominant. Only the hyperdominant condition 

is considered in the derivations. To obtain the necessary conditions for 

realization a linear transformation is used between the structure 

associated with the k Lagrangian subtrees with their (k-1) connecting 

ports and the structure of one Lagrangian tree covering the entire set of 

nodes. The corresponding augmented matrix is realized upon this latter 

Lagrangian tree thus providing for the realization of the original (nxn) 

port-admittance matrix. This method also preserves the original port 

structure and orientation. 

The nonlinear nature of the equations and inequalities which 

contribute to the realization of the port-admittance matrices might 

possibly be attacked in several ways. The solution will certainly not 

be unique in the general sense and in most cases it will be a solution 

having some or all of the unknown quantities bounded. By placing some 

physical restrictions on the elements of the matrices or conductance 

values one could eliminate some of the unknown quantities and thus provide 

for an easier solution. Perhaps arbitrary values could be chosen and all 

of the inequalities could be changed to equalities giving a set of 

independent equations to solve. With several judicious choices for the 
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inequalities one might discover a movement pattern for the unknown 

quantities which might present a clue as to the form of solution. 

Since the synthesis procedures are all oriented toward the network 

which possesses a complete connecting graph it is really immaterial as to 

the actual positioning of the augmenting port. The cut-sets involved 

with the augmenting ports include all of the connecting edges so really 

any one of these edges in a particular cut-set could serve as the 

augmenting port associated with that cut-set. The end points of this edge 

would be considered the port terminals. The author has chosen the basic 

form of the network to appear as in Figure 22. 

There are several suggestions which might prove to be worthwhile 

as further investigations. The Slepian-Weinberg method as used in this 

investigation applies to only one port removal. Perhaps there could be 

a form of connecting network defined so that a Lagrangian subtree 

consisting of more than one port could be removed. This would prove to 

be a very valuable step since there are no unknowns for which to solve 

when using the Slepian-Weinberg procedure. The author is relatively 

sure that similar results are being investigated with linear subtree 

methods. 

Considering the beginning comments of Section IVF, one might wish to 

pursue the synthesis procedure as based directly on the k Lagrangian 

subtrees utilizing the idea of parasitic realizations. This would follow 

in a similar manner as the method of Section IVC except that the unknown 

quantities would be matrix elements and not conductances. In view of 

Equation 99 and the available number of independent equations and 
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inequalities there would obviously be a maximum value for k. Also, 

another limitation which is imposed by the circuit configuration of 

Figure 22 is that for each i— row (column) of Y^_^, r^ S: r^ 

where x < y ^ ̂  ^ where x < y) and x=l, (k-1), 

y=l, (k-1). 

Another suggestion might be to find the optimum time for the 

elimination of the unknowns which are written in terms of x in 

Equation 96 with respect to the form of the port-admittance matrix. 

Perhaps this procedure could be carried further with the goal to be that 

of finding the necessary and sufficient conditions as applied to the 

original port admittance matrix for realization with k Lagrangian subtrees 

with the structure of Figure 22. As previously mentioned in the 

Literature Search this type of investigation is being conducted with 

linear subtrees but no known solutions have as yet been presented. 
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